The scope and impact of kidney disorders in cancer

Farahnaz dadras, MD.

Iran University of Medical Sciences

Firoozgar Hospital

Exploring the Present and Imagining the Future Landscape of Onconephrology

Abinet M. Aklilu (D 1,2 and Anushree C. Shirali1

From its beginnings in 2010, the field of onconephrology has now expanded to become a subspecialty within nephrology.

A specialized field **bridging the world** of **oncology** and **nephrology** became necessary for multiple reasons.

Key among these reasons:

- (1) off-target acute and chronic effects of established and novel anticancer therapeutics on kidney function
- (2) pharmacokinetics of anticancer drugs cleared or metabolized by the kidney
- (3) direct acute effects of cancer on kidney function
- (4) longitudinal care of kidney disease in long-term survivors of cancer.

Kidney360 5: 1377-1379, 2024.

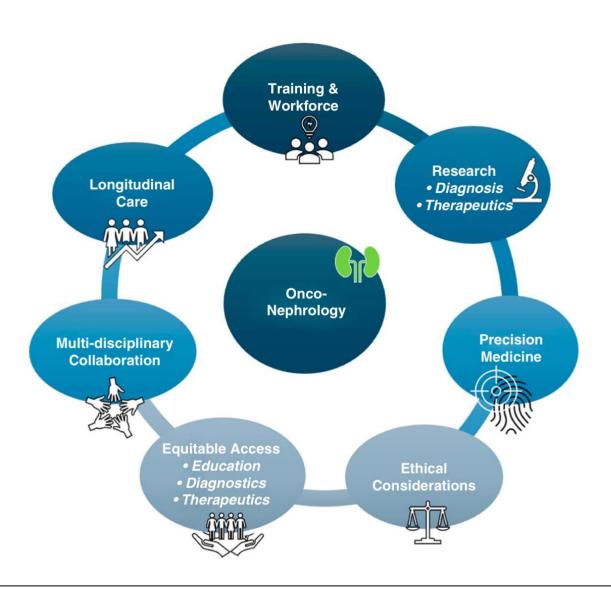
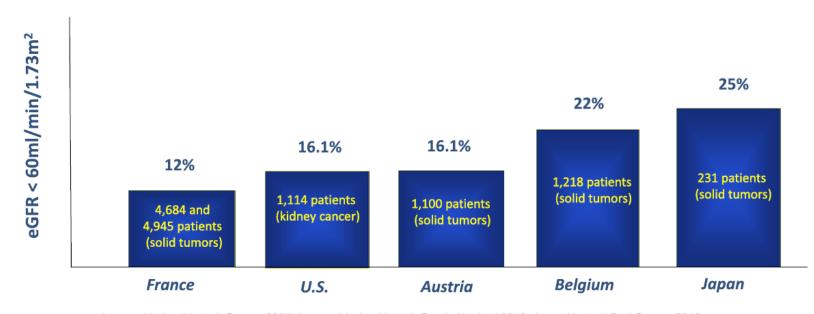


Figure 1. Onconephrology: a new paradigm.

Impact of Cancer on Kidneys

- Chemotherapy and radiation
- TLS
- Metastasis
- Paraneoplastic Syndromes
- Obstruction


Impact of Kidney Health on Cancer

- Kidney function and treatment
- Increased risk of cancer
- Uremic toxins

Onconephrology: The Intersections Between the Kidney and Cancer

Mitchell H. Rosner, MD D 1; Kenar D. Jhaveri, MD2; Blaithin A. McMahon, MD, PhD3; Mark A. Perazella, MD4

CA CANCER J CLIN 2021;71:47-77

Launay-Vacher V, et al. Cancer 2007; Launay-Vacher V, et al. Semin Nephrol 2010; Janus N, et al. Br J Cancer 2010; Canter D, et al. Urology. 2011; Nakamura Y, et al. Nihon Jinzo Gakkai Shi. 2011; Königsbrügge O, et al. Thromb Res 2014

FIGURE 1. The Prevalence of Chronic Kidney Disease (Estimated Glomerular Filtration Rate [eGFR] < 60 mL/Minute/1.73 m²) in Various Cohorts of Patients With Cancer Across the World. Percentages listed are those from patients with cancer who had an eGFR < 60 mL/minute/1.73 m². Adapted from: Launay-Vacher et al, 2007¹; Launay-Vacher, 2010²; Janus, 2010⁵; Canter et al, 2011¹¹; Nakamura, 2011¹¹; and Konigsbrugge et al, 2014.¹²

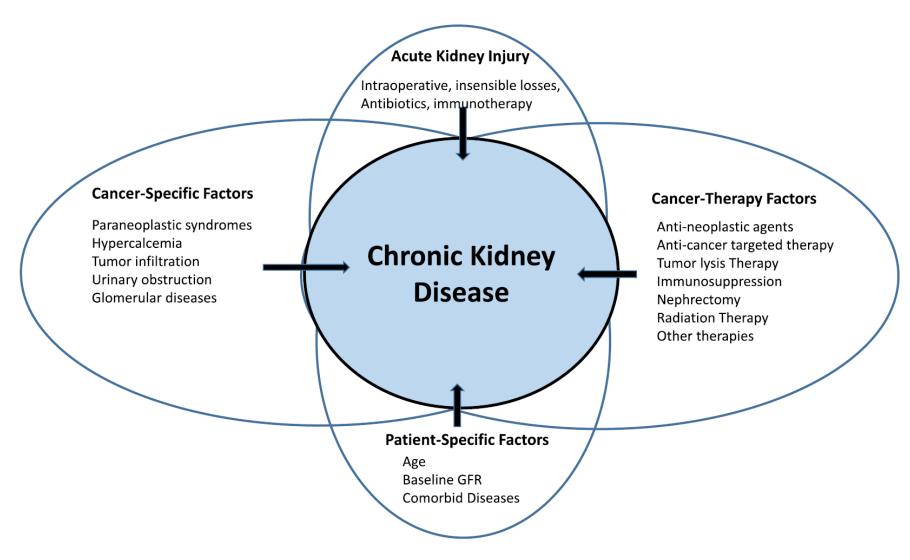


FIGURE 10. Risk Factors for Development of Chronic Kidney Disease (CKD) in Patients With Malignancy. GFR indicates glomerular filtration rate.

Am J Transl Res 2022;14(4):2356-2366 www.ajtr.org /ISSN:1943-8141/AJTR0140920

Original Article Association between chronic kidney disease and cancer including the mortality of cancer patients: national health and nutrition examination survey 1999-2014

Kanglin Guo*, Zufeng Wang*, Ran Luo, Yichun Cheng, Shuwang Ge, Gang Xu

Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. *Equal contributors.

- 30559 participants from NHANES 1999-2014
- 2824 participants with cancer.
- Subgroups were grouped by cancer location.
- The three cancers with highest prevalence of CKD were kidney cancer (72.3%), bladder cancer (54.7%), and colon cancer (43.0%).
- The prevalence of CKD was higher in cancer patients compared to non-cancer patients.
- Only genitourinary cancer showed a positive association with CKD (OR=1.23, 95% CI: 1.05-1.44) after adjusting for confounding factors.
- However, **CKD was an independent risk factor for mortality from cancer** regardless of the type of cancer.

Chronic kidney disease and cancer

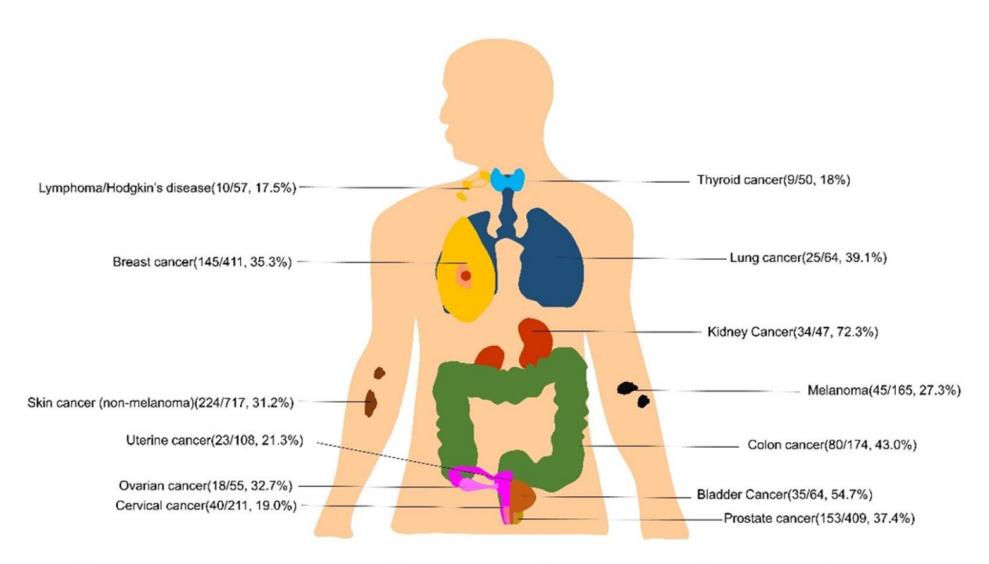
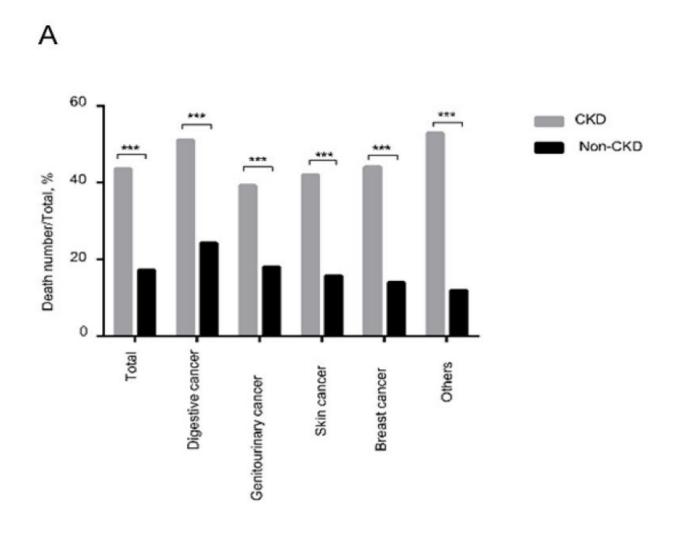
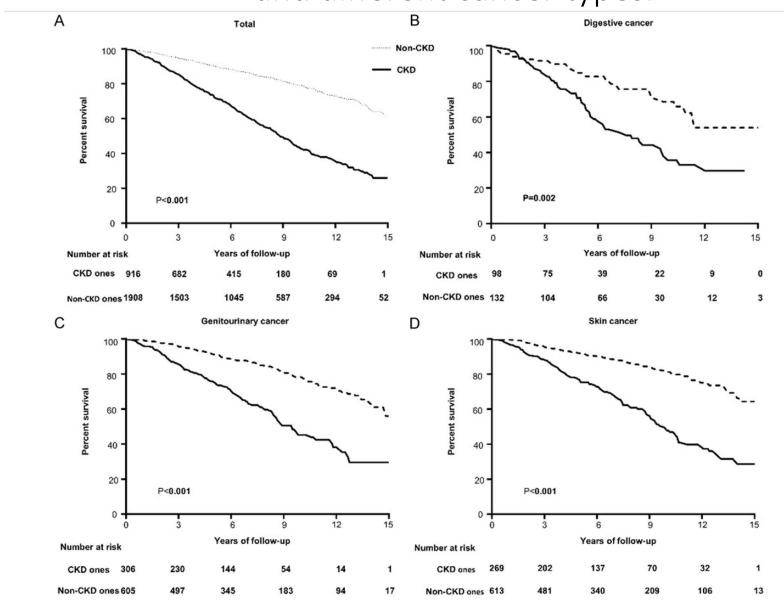



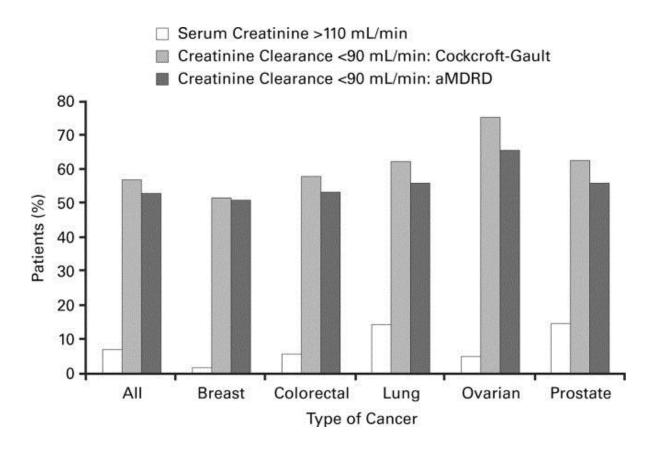
Figure 2. The body map of the incidence of CKD among different tumor patients. CKD: chronic kidney disease.

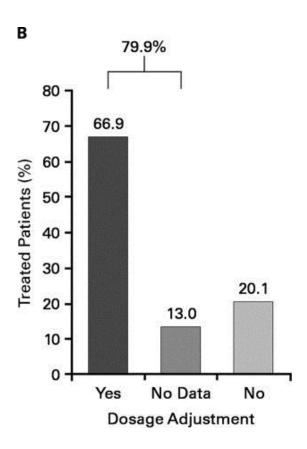

	CKD/total number	total number		Model 1		Model 2		Model 3	
	(%)	<i>p</i> -value	OR	<i>p</i> -value	OR	p-value	OR	<i>p</i> -value	
No-cancer	4677/27735 (16.9%)	Ref	Ref		Ref		Ref		
Digestive cancer	98/230 (42.6%)	<0.001	3.66 (2.81-4.76)	<0.001	1.32 (0.99-1.74)	0.055	1.23 (0.91-1.65)	0.173	
Genitourinary cancer	306/911 (33.6%)	<0.001	2.49 (2.17-2.87)	<0.001	1.21 (1.04-1.41)	0.016	1.23 (1.05-1.44)	0.013	
Skin cancer	269/882 (30.5%)	<0.001	2.16 (1.87-2.51)	<0.001	0.97 (0.82-1.14)	0.698	0.94 (0.79-1.12)	0.483	
Breast cancer	145/411 (35.3%)	<0.001	2.69 (2.19-3.30)	<0.001	0.97 (0.78-1.22)	0.805	0.89 (0.70-1.13)	0.351	
Others	51/212 (24.1%)	0.006	1.56 (1.14-2.14)	0.006	0.91 (0.64-1.28)	0.581	0.83 (0.58-1.20)	0.324	
Total cancer	916/2824 (32.4%)	<0.001	2.37 (2.17-2.58)	<0.001	1.07 (0.97-1.18)	0.184	1.04 (0.94-1.15)	0.419	

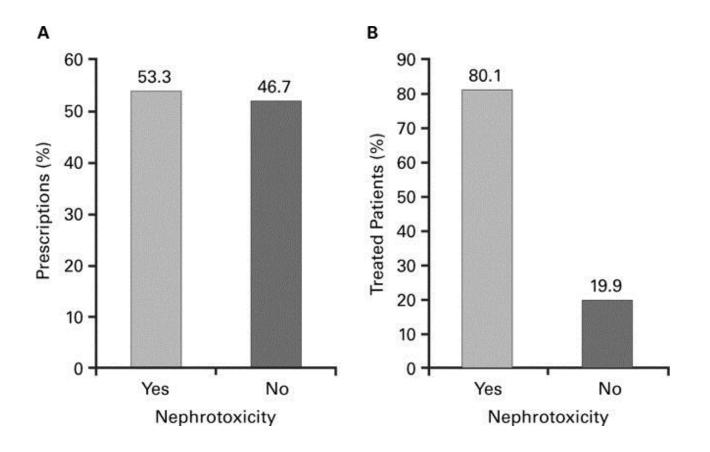
Model 1: Unadjusted; Model 2: Adjusted for age, sex, marital status, race/ethnicity, education level, and category of income; Model 3: Additional adjusted for hypertension, diabetes, alcohol consumption, smoking status, body mass index, high-density lipoprotein cholesterol, total cholesterol, triglyceride, and uric acid. CKD: chronic kidney disease.

A: The different mortality of cancer patients with or without CKD.

Mortality is related to CKD status among all cancer patients and different cancer types.


Cancer


An International Interdisciplinary Journal of the American Cancer Society


Prevalence of Renal Insufficiency in cancer patients and implications for anticancer drug management

The renal insufficiency and anticancer medications (IRMA) study

Vincent Launay-Vacher PharmD ⋈, Stéphane Oudard MD, Nicolas Janus PharmD, Joseph Gligorov MD, Xavier Pourrat PharmD, Olivier Rixe MD, Jean-François Morere MD, Philippe Beuzeboc MD, Gilbert Deray MD, On behalf of the Renal Insufficiency and Cancer Medications (IRMA) Study Group

Cockcroft-Gault Creatinine Clearance

Variable	Variable C-G CrCl			
C-G CrCl, mL/min	90-60 mL/min	59-30 mL/min	29-15 mL/min	<15 mL/min
Stage of RI	2	3	4	5
No. of patients	1760	864	51	10
No of INN drugs	62	26	16	4
No. of prescriptions	2696	1121	39	7
Dosage adjustment, %	*			
Yes	41.75	44.27	38.6	28.57
ND	10.26	10.46	10.3	71.43
No	47.99	45.27	51.1	0
Nephrotoxicity, % [†]				
Yes	53.6	60.2	67	100
No	46.4	39.8	33	0

Epidemiology of chronic kidney disease in cancer patients: lessons from the IRMA study group

Vincent Launay-Vacher 1

Affiliations + expand

PMID: 21146120 DOI: 10.1016/j.semnephrol.2010.09.003

Observations performed in IRMA-2 showed that the **survival rate at 2 years** was significantly **lower for patients with KD** (aMDRD<60).

This reduced survival has been hypothesized to be related to the cardiovascular complications of KD or as a consequence of inappropriate drug dosage adjustment.

Semin Nephrol . 2010 Nov;30(6):548-56.

Chronic kidney disease and risk of kidney or urothelial malignancy: systematic review and meta-analysis

What is the risk of incident urinary tract malignancy among persons with CKD?

Methods

Systematic search 3,035 records identified 6 observational studies included

Chronic kidney disease eGFR <60 mL/min/1.73 m² or diagnostic code for CKD

Outcomes of interest Cancer diagnosis of the kidney, renal pelvis, ureters, urinary bladder, and urethra

Results

8,617,563 subjects 982,236 subjects with CKD

IRR

(incidence

rate ratio)

aHR

(adjusted

hazard ratio)

13,708 kidney cancer cases 13,772 urothelial carcinoma cases

Kidney cancer

3.36 (2.32–4.88)

2.04 (1.77–2.36)

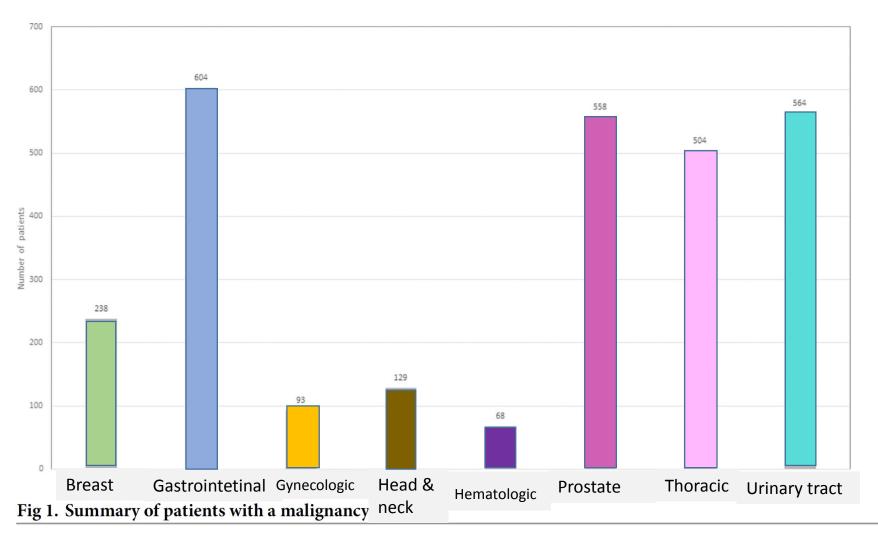
Urothelial carcinoma

3.96 (2.44–6.40)

1.35 (1.22–1.50)

Brooks, E. et al. NDT (2023) @NDTSocial Persons with non-dialyzed CKD have a higher unadjusted incidence and adjusted risk of urinary tract malignancy compared to those with preserved kidney function.

RESEARCH ARTICLE


Risk of malignancy in patients with chronic kidney disease

Ketki K. Tendulkar 1*, Brendan Cope², Jianghu Dong^{1,3}, Troy J. Plumb¹, W. Scott Campbell⁴, Apar Kishor Ganti⁵

PLOS ONE | https://doi.org/10.1371/journal.pone.0272910 August 17, 2022 2

Table 1. Patient characteristic summary by stage of CKD.

	All cohort (N = 13,750)	> = 60 (N = 282)	45-59 (N = 8,197)	30-44 (N = 2,940)	<30 (N = 2,331)	P value
Male (%)	53	54	54	49	53	< 0.001
Race (%)						< 0.001
White	80.5	80.5	79.5	82.9	81.7	
AA Black	13.6	14.9	15.6	11.3	10.0	
Hispanic	2.4	1.4	2.1	2.3	3.4	
Others	3.5	4.2	2.8	3.5	4.9	
Age (%)						< 0.001
< 50	22.5	28.7	23.0	17.1	27.2	
50-65	33.5	50.7	36.5	29.1	26.4	
66-80	29.1	15.9	28.0	33.5	29.4	
>80	14.9	4.6	12.5	20.3	17.0	
Diabetes (%)	48.3	42.8	55.3	45.5	45.3	< 0.001
Hypertension (%)	99.7	99.9	99.9	99.8	99.7	0.009
CAD (%)	36.9	30.1	39.1	39.6	27.7	< 0.001
Smoking history (%)	50.0	49.5	49.7	48.6	53.6	< 0.001
BMI (%)						< 0.001
<18.5	8.3	3.9	4.7	9.0	20.8	
18.5-24.9	20.0	17.4	19.4	21.0	21.3	
25.0-29.9	27.1	29.9	28.6	27.1	21.4	
>= 30	44.5	48.7	47.3	42.9	26.5	

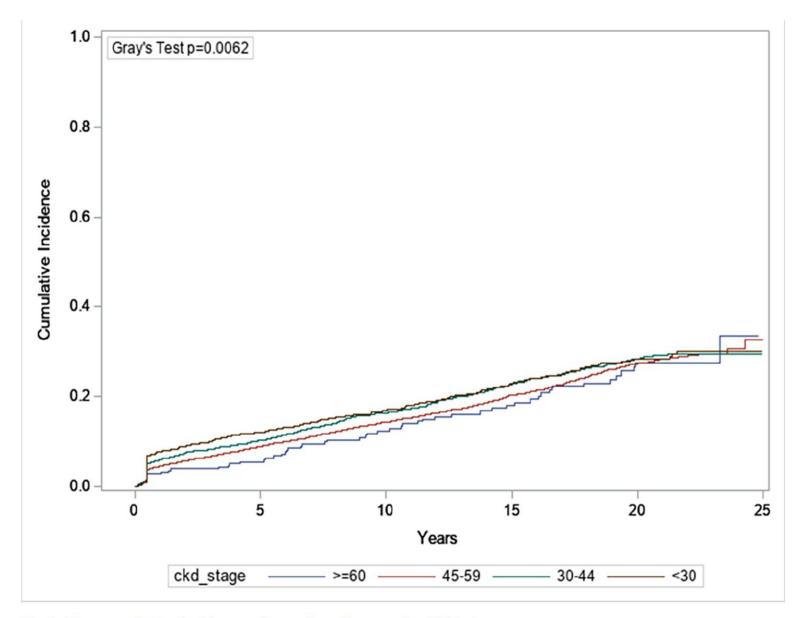


Fig 5. The cumulative incidence of overall malignancy by CKD stage.

Table 2. Factors affecting the development of malignancy after CKD diagnosis.

	Hazard Ratio (95% CI)	P value	
<mark>Age </mark>			
<50	1.00		
50-65	2.23 (1.98, 2.51)	< 0.001	
66-80	3.15 (2.78, 3.56)	< 0.001	
>80	3.34 (2.89, 3.88)	< 0.001	
Male	1.44 (1.33, 1.56)	< 0.001	
Race			
White	1.00		
AA Black	0.92 (0.82, 1.03)	0.161	
Hispanic	0.84 (0.65, 1.08)	0.193	
Others	1.17 (0.96, 1.42)	0.109	
Diabetes	0.90 (0.83, 0.98)	0.003	
CAD	0.85 (0.80, 1.01)	0.051	
Smoking history	1.18 (1.09, 1.28)	< 0.001	
BMI			
<18.5	0.96 (0.81, 1.13)	0.297	
18.5-24.9	1.00		
25.0-29.9	1.07 (0.96, 1.20)	0.888	
> = 30	1.02 (0.93, 1.17)	0.631	
Range of eGFR			
> = 60	1.00		
45–59	1.06 (0.81, 1.39)	0.631	
30-44	1 25 (0.95, 1.65)	0.102	
<30	1.44(1.08,1.91	0.004	

Chronic Kidney Disease and Cancer: Inter-Relationships and Mechanisms

Mengsi Hu^{1,2†}, Qianhui Wang^{1†}, Bing Liu^{1,2}, Qiqi Ma¹, Tingwei Zhang¹, Tongtong Huang¹, Zhimei Lv^{1,2*} and Rong Wang^{1,2*}

Front. Cell Dev. Biol. 10:868715. doi: 10.3389/fcell.**2022.**868715

¹Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China, ²Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China

- Globally, the incidence of (CKD) and death due to CKD have increased by 89 and 98%, respectively, from 1990 to 2016.(1)
- A large cohort study of CKD from the United Kingdom showed that malignant tumors might be one of the leading causes of non-cardiovascular death in patients with CKD stage G3-G5, accounting for 15% of all deaths in this population.(2)
- The number of cancer survivors has significantly risen, whereas this
 population might also be suffering a high risk of CKD. (3)

^{1.}Xie, Y., et al.. Kidney Int. 94, 567–581. doi:10.1016/j.kint.2018.04.011

^{2.} Marks, A., et al,.. Fam. Pract. 30, 282–289. doi:10. 1093/fampra/cms079

^{3.} Shin, H.-Y., et al,.. Asian Pac. J. Cancer Prev. 16, 1355–1360. doi:10.7314/apjcp.2015.16.4.

POTENTIAL MECHANISMS OF INCREASED CANCER INCIDENCE RATE IN CKD PATIENTS

- An analysis of datafrom the United States, Europe, Australia, and New Zealand on renal and urethral cancer in end-stage dialysis patients showed that increased risk of renal parenchymal cancer in ESKD patients was consistent with loss of renal function and its duration.
- The incidence rate of cancer incidence in **renal transplant patients** with ESKD **tripled** that of patients before renal transplantation, which might be attributed **to immune suppression** and **oncogenic virus infection**.

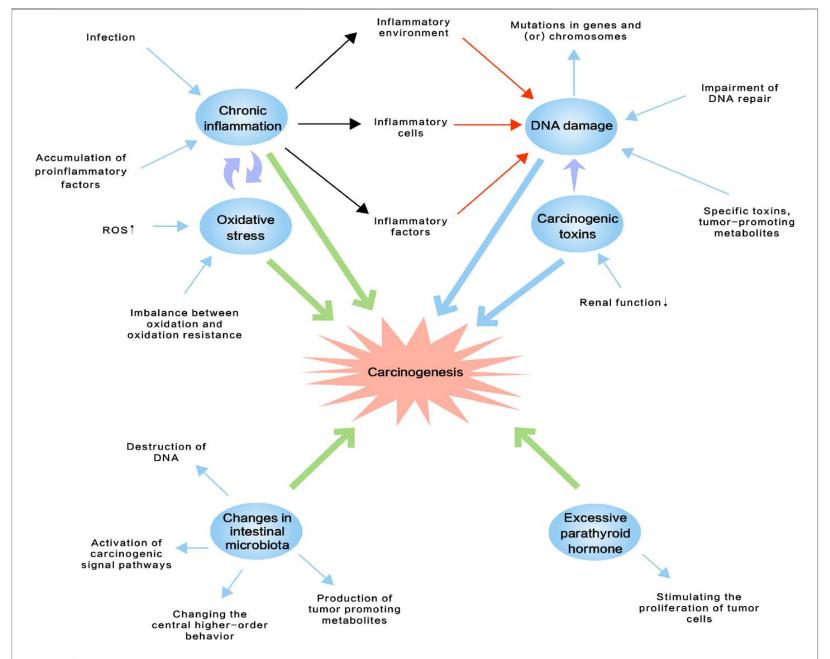


FIGURE 1 | Schematic diagram of potential molecular mechanisms of the relatively high incidence rate of cancer in CKD, which might include chronic inflammation, accumulation of carcinogenic compounds, oxidative stress, impairment of DNA repair, excessive parathyroid hormone and changes in intestinal microbiota. ROS, reactive oxygen species.

Changes in Intestinal Microbiota

 Alarge number of studies reported that lactobacilli decreased in the intestinal microbiota of CKD animals and patients, while Enterobacteriaceae with a gene encoding tryptophan tyrosine phenol lyase increased, demonstrating they might come into play in production of uremic toxins (Kikuchi et al., 2017). As mentioned earlier, AHR was a ligand activated transcription factor known for its tumor-promoting effects, and uremic toxins derived from intestinal microbiota have been recognized as effective endogenous ligands for AHR activation (Murray et al., 2014).

- Other mechanisms have been proposed that the imbalance of intestinal flora might aggravate the development of intestinal tumors and inhibit antitumor immunity, and might be related to the followings:
- 1) destruction of DNA: This might arise by the injury induced by intestinal flora producing specific toxins like Colibactin;
- 2) activation of carcinogenic signal pathways, including PI3K/Akt, Wnt and NF-kB signaling pathways, which were activated by the toxins expressed by Helicobacter pylori; and
- 3) production of tumor-promoting metabolites such as secondary bile acids, secreted or produced by coupled binding of bile acids by intestinal microbiota (Mima et al., 2017).

Impact of Cancer on Kidneys

- Chemotherapy and radiation
- TLS
- Metastasis
- Paraneoplastic Syndromes
- Obstruction

Nephrectomy

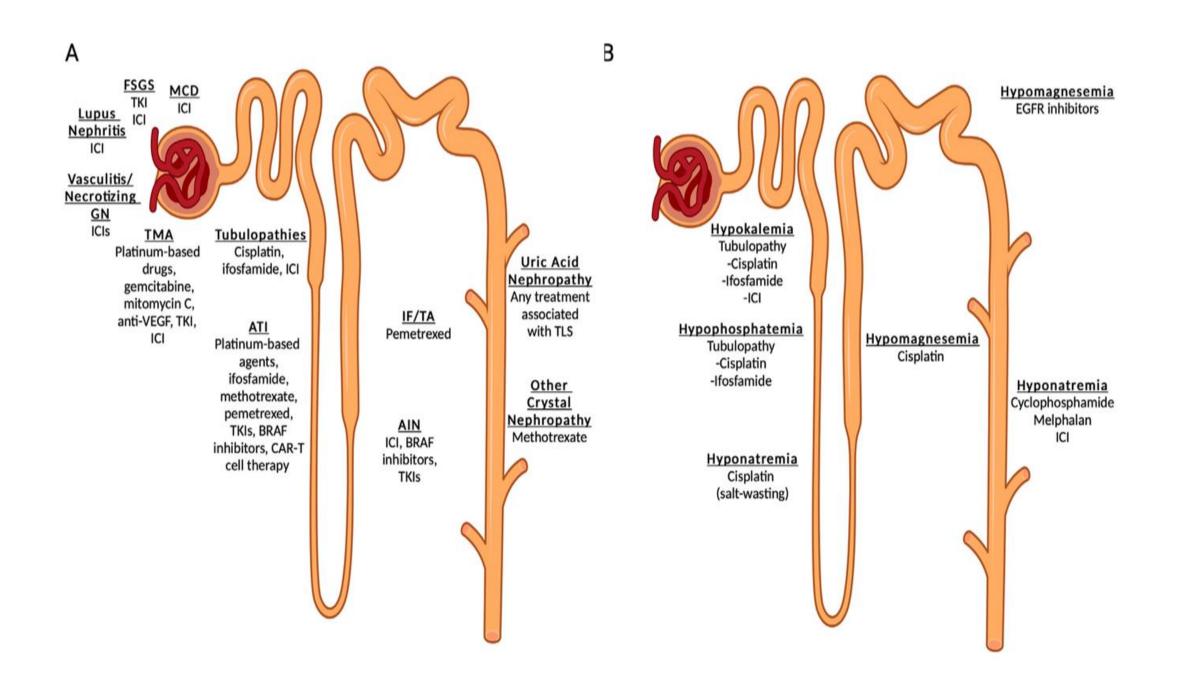
- Reduction of healthy parenchymal volume after nephrectomy
- might lead to compensatory hypertrophy and over filtration of
- the remaining kidney, as 50% of the nephron was lost, which
- could result in glomerulosclerosis, proteinuria, hypertension and decrease in renal function in the long run.
- Therefore, the
- Therefore preservation of healthy renal parenchyma and long-term
- follow-up was of great significance to prevent the occurrence
- of CKD after nephrectomy.

Core Curriculum in Nephrology

Onconephrology: Core Curriculum 2023

Niloufarsadat Yarandi and Anushree C. Shirali

Measurement of Kidney Function in Cancer Patients


- GFR remains widely accepted as the best index for kidney function.
- eGFR)-creatinine are confounded by factors
- cachectic sarcopenia
- variable protein intake
- , which may lead to an overestimation of the actual GFR.
- Additionally, because tubular secretion contributes to urinary creatinine excretion, drugs such as trimethoprim, Cyclin dependent kinase 4/6 which inhibit secretory pathways for creatinine, raise creatinine levels without affecting GFR.

- The same may be true in the cancer population although some cancers secrete cystatin C and some drugs including corticosteroids may also increase cystatin C levels.
- Inulin clearance is the gold standard for measured GFR, but it is not used in clinical practice.
- Measured clearances of 1251-iothalamate or iohexol are acceptable because they also undergo glomerular filtration without tubular secretion, reabsorption, or metabolism.

Nephrotoxicity of Anticancer Therapy

Drug	Type of Kidney AEs	Mechanism of Kidney AEs	Prevention and Treatment
Platinum agents	AKI-ATN (Cis>>Carbo>Oxali), Fanconi syndrome, hyponatremia, hypomagnesemia	ATN: direct tubular toxicity	Volume expansion, magnesium repletion
Ifosfamide	AKI-ATN, hemorrhagic cystitis, NDI	ATN: direct tubular toxicity; hemorrhagic cystitis: bladder injury	Volume expansion/mesna for hemorrhagic cystitis
Cyclophosphamide	Hyponatremia, hemorrhagic cystitis	Hyponatremia: increased tubular reabsorption of water/? ADH secretion; hemorrhagic cystitis: bladder injury by metabolite	Volume expansion/mesna for hemorrhagic cystitis
Bendamustine	AKI-ATN, NDI, Gitelman	ATN: direct tubular toxicity	
Melphalan	AKI, hyponatremia	SIADH	SIADH: drug withdrawal, usual approach to SIADH
Methotrexate	AKI	Intratubular crystal formation	Volume expansion, urine pH > 7.0, stop PPI, NSAIDs
Pemetrexed	AKI	Acute tubular necrosis, progressive interstitial fibrosis, nephrogenic diabetes insipidus, and distal renal tubular acidosis	Folic acid and vitamin B ₁₂ , adequate hydration
Gemcitabine	AKI, hypertension, proteinuria	TMA	Drug withdrawal, complement inhibitors may be considered
Nitrosoureas	CCNU, Me-CCNU, BCNU: chronic interstitial nephritis, Streptozocin-Fanconi syndrome, AKI	Chronic interstitial nephritis: ? tubular cell protein alkylation; AKI: tubular injury	
Trabectedin	AKI	? secondary to rhabdomyolysis	
Doxorubicin	AKI, hypertension, proteinuria	TMA	TMA: drug withdrawal
Mitomycin C	AKI, hypertension, proteinuria	TMA	TMA: drug withdrawal, ? eculizumab
Vinca alkaloids	AKI, hypertension, proteinuria, hyponatremia	TMA, SIADH	TMA: drug withdrawal; SIADH: drug withdrawal

Abbreviations: ADH, antidiuretic hormone; AE, adverse event; AKI, acute kidney injury; ATN, acute tubular necrosis; BCNU, carmustine; Carbo, carboplatin; CCNU, lomustine; Cis, cisplatin; Me-CCNU, methyl-CCNU, semustine; NDI, nephrogenic diabetes insipidus; NSAID, nonsteroidal anti-inflammatory drug; Oxali, oxaliplatin; PPI, proton pump inhibitor; SIADH, syndrome of inappropriate diuresis; TMA, thrombotic microangiopathy.

Platinum-based Chemotherapy

- Platinum-based Chemotherapy Cisplatin, carboplatin, and oxaliplatin These structurally different agents cross-link DNA, distorting the DNA helix and inducing cell death.
- Kidney effects include dose-dependent nonoliguric AKI from ATN, affecting up to 30% of patients on cisplatin, particularly with single-cycle dosing of >60 mg/m2 or cumulative-cycle dosing of >300 mg/m2.
- Drug cessation usually resolves ATN. AKI risk is highest with cisplatin, followed by carboplatin and oxaliplatin.
- Hypomagnesemia, Fanconi syndrome, distal renal tubular acidosis, TMA and hyponatremia from salt wasting nephropathy have been well described with cisplatin. (rare with carbo and oxaliplatin)

- Prevention of platinum drug nephrotoxicity starts with
- volume expansion.
- Cisplatin enters proximal tubule epithelial cells (PTECs) via transporters, including **organic cation transporter-2** whose expression is upregulated by hypomagnesemia.
- Limited data suggest that magnesium repletion may counteract cisplatin nephrotoxicity.

Table 5. Risk Factors for Anticancer Drug-induced Renal Toxicity: Example of Cisplatin

Repeated administrations and frequent courses

- √Cumulative dose >450 mg/m²
- √Pre-existing renal disease/abnormal renal function
- ✓Dehydration
- √Heart failure, adema, ascites, etc
- √Anemia
- ✓Coadministration of other nephrotoxic agents
- ✓Dosage not adjusted to the level of renal function

Ifosfamide

- Ifosfamide is an alkylating agent used against pediatric and adult sarcomas, testicular cancer, and other conditions.
- Nephrotoxic metabolite chloroacetaldehyde causes ATN and Fanconi syndrome, particularly with concurrent cisplatin use.
- Nephrogenic diabetes insipidus has also been described.
- Volume expansion is the only prophylaxis.
- Childhood survivors of cancer requiring ifosfamide treatment may develop subsequent CKD, particularly if their cumulative ifosfamide exposure was >84 g/m2.
- Ifosfamide may also cause **hemorrhagic cystitis**, for which sodium 2-mercaptoethane sulphonate (**mesna**) **provides prophylaxis**.

Cyclophosphamide

- Structurally similar to ifosfamide, cyclophosphamide.
- The metabolites are different than ifosfamide, explaining why ATN is rare with cyclophosphamide.
- Hemorrhagic cystitis does occur, and intravenous dosing requires mesna prophylaxis.
- Cyclophosphamide is also associated with hyponatremia.
- The mechanism is not fully elucidated, but
- increased ADH secretion,
- up-regulation of the V2 746 receptor,
- increased aquaporin permeability have been proposed.

Methotrexate

- Used against osteosarcomas, leukemias, and lymphomas,
- Methotrexate inhibits dihydrofolate reductase and thymidine synthase, reducing the availability of nucleotides necessary for cell division.
- High-dose intravenous methotrexate (HDMTX: >0.5 g/ m2) vasoconstricts afferent arterioles and forms intratubular crystals when urine is acidic and urine flow is low.
- Both mechanisms lead to nonoliguric and reversible AKI.
- NSAIDs, penicillins, and proton pump inhibitors (PPIs) interfere with drug transporter elimination of methotrexate and should be avoided with HDMTX.
- Alkali-containing crystalloids to generate urine pH >7.0 and urine output > 2.5 L/day are essential.
- Highdose leucovorin within 18-42 hours of HDMTX provides folate rescue.

- This is critical to <u>prevent and treat</u> renal and extrarenal methotrexate toxicity, but **efficacy wanes at methotrexate levels of >10 \muM**.
- After HDMTX infusion, the drug levels should be monitored until levels decrease < 0.1 μ M.
- Hemodialysis may be necessary for prevention of extrarenal toxicities from high methotrexate levels in patients with AKI.
- Methotrexate is partly protein bound, which is not ideal for extracorporeal removal, and postdialysis drug levels also commonly rebound.

- The recombinant enzyme glucarpidase reduces plasma methotrexate concentrations by up to 99% within 15 minutes of administration without plasma rebound.
- Glucarpidase is approved by the US Food and Drug Administration for delayed methotrexate clearance with HDMTX-associated kidney impairment.
- The former is defined by expert guidelines as plasma methotrexate levels of >50 μ M, >30 μ M,>10 μ M, and>5 μ M at 24, 36, 42, and 48 hours after HDMTX dosing, respectively.

Pemetrexed

- Pemetrexed is a **methotrexate analog** that is approved for non–small cell lung cancer (**NSCLC**) and **mesothelioma**, **often concurrently with cisplatin**.
- **Direct tubular toxicity** of pemetrexed causes
- ATN,
- nephrogenic diabetes insipidus,
- distal RTA
- Dosing in patients with CLcr < 45 mL/min is contraindicated.
- Volume expansion as well as vitamin B12 and folate supplementation are preventive measures.
- Drug cessation usually stabilizes or reverses AKI.
- Some patients with higher cumulative dosing and exposure will develop CKD from progressive interstitial fibrosis.

Gemcitabine

- Gemcitabine is an antimetabolite used in ovarian cancer, pancreatic cancer, and other solid tumors.
- It is associated with TMA, with incidences estimated at 0.31%-1.4%. Patients may develop systemic TMA characterized by microangiopathic hemolytic anemia, thrombocytopenia, proteinuria, and AKI or kidney limited TMA with AKI/proteinuria.
- New onset or worsening of hypertension may herald TMA.
- Stopping gemcitabine stabilizes or improves kidney disease in most patients.
- <u>Plasma exchange does not have a role</u> unless there is **another consideration**, **such as autoantibodies to complement factor H** that predisposed the patient to TMA.

 Complement inhibition with eculizumab has been successful with good kidney and hematological outcomes in small case series and isolated case reports, and this warrants consideration in refractory cases of gemcitabine-TMA.

Targeted Agents Vascular Endothelial Growth Factor Inhibitors

- (VEGF) inhibitors target VEGF pathways to inhibit tumor angiogenesis in a variety of cancers.
- They include :
- antibodies (bevacizumab)
- soluble receptors (aflibercept) against circulating VEGF
- antibodies (ramucirumab) against VEGF receptors (VEGF-R).

Vascular Endothelial Growth Factor Inhibitors

• Podocyte-specific VEGF expression is integral to the function of the glomerular basement membrane and glomerular endothelium.

 Additionally, circulating VEGF promotes pressure natriuresis, lymphangiogenesis, and nitric oxide signaling.

•

- Collectively, VEGF inhibition is associated with dose-dependent hypertension, proteinuria, and systemic or kidney-limited TMA.
- Kidney biopsy may reveal TMA, but minimal change disease (MCD) and focal and segmental glomerulosclerosis (FSGS) have also been described.

- Hypertension rates for VEGF inhibitors range from 19% to 30% in large meta-analyses of clinical trials.
- Dihydropyridine CCB or (RAAS) inhibitors are the first line of treatment for hypertension due to VEGF inhibitors.
- Treatment can continue with controlled hypertension and subnephrotic proteinuria.
- For drug-attributed **TMA** or **nephrotic proteinuria**, **discontinuation is necessary** and usually reverses kidney toxicity.

Tyrosine Kinase Inhibitors

- Small-molecule TKIs prevent activation of receptor, cytoplasmic, or dual-specificity tyrosine kinases (TK), inhibiting signaling pathways for cell growth, migration, and apoptosis.
- Depending on the specific TK targets (VEGF, epidermal growth factor receptors, anaplastic lymphocyte kinase, etc), there are variable side effects of TKIs.

- For example, sunitinib, sorafenib, axitinib, cabozantinib, and others downstream of VEGF are associated with hypertension and proteinuria, either isolated or with TMA.
- Other kidney lesions include MCD, FSGS from healed TMA, acute tubulointerstitial nephritis (AIN), and chronic interstitial nephritis.
- Electrolyte disorders, including hypocalcemia, hypophosphatemia, and hypomagnesemia, are seen in varying degrees with many multitarget TKIs.
- Vandetanib has been associated with all 3 of these electrolyte derangements.

BRAF Inhibitors

- Serine-threonine kinase B-rapidly activated fibrosarcoma (BRAF)
 inhibitors, including dabrafenib and vemurafenib, target the BRAF
 protein, which activates the mitogen-activated protein kinase
 (MAPK) pathway.
- Melanoma and other tumors with specific BRAF mutations have prooncogenic signaling, and inhibition of the BRAF and MAPK pathways is a potent antitumor treatment.
- These drugs have been associated with AIN, ATN with Fanconi syndrome, and proteinuric podocytopathy when used in combination with MEK inhibitors.

EGFR Inhibitors

- These include small molecule TKIs such as gefitinib, erlotinib, and afatinib and monoclonal antibodies (mAbs) such as cetuximab and panitumumab.
- Anti-EGFR mAbs have a **high incidence of hypomagnesemia** via **inhibition** of transient receptor potential channel M6 (**TRPM6**)—mediated absorption of magnesium in the distal nephron.
- Hypokalemia and hypophosphatemia have also been less described.

 Rare reports of glomerular lesions include crescentic IgA nephropathy, immune-complex glomerulonephritis, and pauci-immune crescentic glomerulonephritis.

Proteasome Inhibitors

- Primarily used as treatment for multiple myeloma, proteasome inhibitors (PIs) oppose the clearance of abnormal intracellular proteins, allowing accumulation to toxic levels particularly in tumor cells.
- PIs are associated with dose dependent hypertension from increased vascular tone, reactivity, and dysfunction via endothelial injury from proteosome inhibition.
- PI dosing should be modified in uncontrolled hypertension and discontinued in hypertensive crises.
- TMA has also been reported as definitively associated with PIs in multiple myeloma patients, more often with carfilzomib compared with bortezomib or ixazomib.
- Treatment data are limited, but **drug discontinuation has been necessary**, and use of <u>plasma exchange has been ineffective</u> for PI-associated TMA.

Immunotherapies

Immune Checkpoint Inhibitors

- ICIs are mAbs directed against negative regulatory receptor checkpoints of T-cell immunity, including
- cytotoxic Tlymphocyte—associated antigen 4 (CTLA-4) such as ipilimumab,
- programmed death-1 (PD-1) and PD-1 ligand (PD-L1) pathway [PD-L1]) such as cemiplimab, nivolumab, pembrolizumab (PD-1),
- atezolizumab, avelumab, and durvalumab (PD-L1), which prevent T-cell activation.
- ICIs activate dormant antitumor immunity, allowing improved survival in previously difficult-to-treat malignancies such as lung cancer, RCC, and melanoma.

•

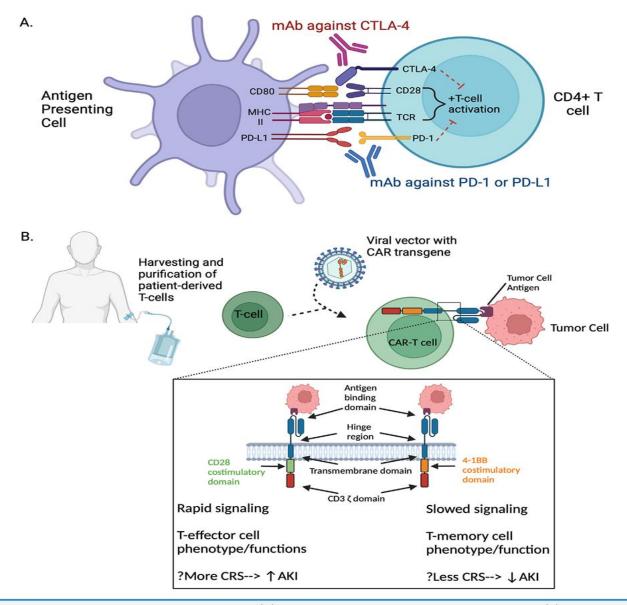


Figure 2. The design and rationale of immunotherapy. (A) T cells are normally activated by 2 signals. (1) Antigen presenting cell displaying an antigen in the context of a self-MHC molecule to a T cell with receptor specificity for that antigen. (2) Binding of a costimulatory molecule (eg, CD28) on the T cell to its cognate ligand on the antigen presenting cell (eg, CD80/CD86). Negative regulatory checkpoints such as CTLA-4 or PD-1 on the T cell interfere with costimulation or bind to PD-L1, respectively, to inactivate T cells. Monoclonal antibodies against PD-1 and CTLA-4 prevent T-cell anergy against tumor cell antigen by preventing the inactivation of T cells. (B) CAR-T production begins with harvesting of T cells from the patient who is a candidate for CAR-T therapy. These

- ICIs are associated with off-target immune-related adverse events (IRAEs), commonly involving the skin, endocrine system, and gastrointestinal tract.
- Although the kidney is less involved, nephrotoxicity occurs in up to 2% to 5%, with a higher risk with combination ICIs.
- Risk factors for ICI-AKI include use of PPIs and NSAIDs.

- AKI is the most common kidney IRAE from ICIs, and AIN is the most reported histopathologic finding.
- Glomerular diseases such as MCD, FSGS, MN, lupus nephritis have also been described, as have electrolyte derangements including distal renal tubular acidosis.

- ICI-AKI warrants drug suspension pending workup of AKI.
- In either suspected or confirmed AIN, corticosteroid dosing at 12 mg/kg allows recovery from ICI-AIN.
- Biopsy should be considered for patients whose AKI does not respond to such dosing.
- The optimal dose and duration of corticosteroids for ICI-AIN is unclear though observational data have suggested that shorter-term (w1 month), tapered dosing may be reasonable if AKI recovery is sustained after taper.
- Recent retrospective data from >400 patients have shown a recurrent ICI-AIN rate of 16.5%.

Chimeric Antigen Receptor T Cells

- Chimeric antigen receptor T-cells (CAR-T) are **patient derived T cells** modified ex vivo to **express a chimeric receptor** with an external **tumor antigen** domain allowing direct CAR-T activation via linked costimulation and CD3 ζ chain domains.
- Upon infusion, CAR-T recognize tumor antigens and become activated to release of proinflammatory cytokines, particularly interleukin 6 (IL-6).

raidina dia onian

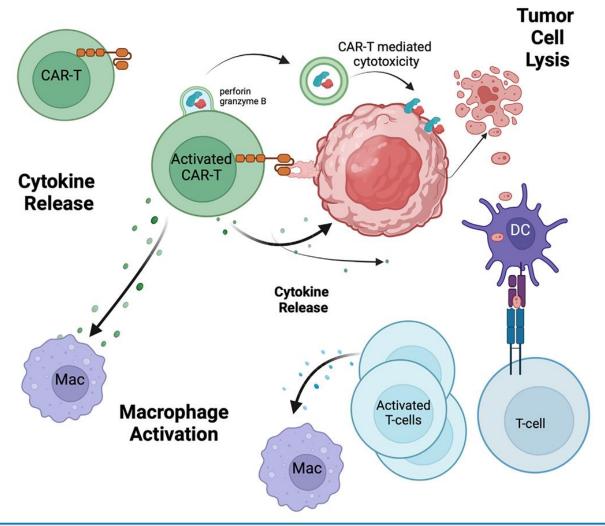


Figure 3. A schema of the various inflammatory responses with CAR-T. Recognition of tumor specific antigen activates CAR-T effector mechanisms aimed at tumor control including cytokine release, tumor lysis, and macrophage activation. These mechanisms may occur simultaneously or independently of each other. Cytokines released by CAR-T include IL-2, which allows expansion of CAR-T cells in vivo, while IL-6 and IFN-γ have tumoricidal properties. Additional cytotoxicity of CAR-T is mediated by perforin/granzyme B. Depending on the scale of tumor cell death, tumor lysis syndrome may result. Tumor cell death also releases novel antigen that if processed by antigen-presenting cells such as DCs and macrophages can activate native T cells. Activated T cells have their own effector mechanism of cytokine release. Thus, multiple pathways can converge to result in cytokine release syndrome, a large, systemic inflammatory cascade that is characterized by fever, hypotension, and other manifestations of severe inflammation. Created with Biorender.com. Abbreviations: CAR-T, chimeric antigen receptor T-cells; DC, dendritic cells; IFN-γ, interferon γ; IL, interleukin; MAC, macrophages; and TLS, tumor lysis syndrome.

- Cytokine-release syndrome (CRS) is clinically characterized by fever, hypotension, diarrhea, and potential for IL-6-driven severe neurotoxicity.
- Hemodynamic shifts may result in AKI on the prerenal to ATN spectrum, though tumor lysis and macrophage activation syndromes have also been described.
- Retrospective data report AKI rates of 5% to 30% with CAR-T, which correlates with the incidence of CRS.
- This wide range of AKI is likely related to the type of costimulatory domain, as CD28 is thought to have more potent CAR-T activation and CRS.

 CRS management, which often includes intensive care monitoring, includes corticosteroids and IL-6 receptor blockade (tocilizumab), especially for patients with CRS related neurotoxicity.

Nephrotoxicity of Other Therapies Used in Anticancer Management

- Bisphosphonates
- Used to counteract up-regulated osteoclasts, high-dose intravenous bisphosphonates have been associated with cumulative, dosedependent FSGS (pamidronate) and ATN (zoledronate).
- Dosing is not recommended for most of these agents for CLcr < 30 mL/min, though the benefits may outweigh the risks with short-term pamidronate use.
- Reducing cumulative doses and increasing dose intervals may prevent bisphosphonate nephrotoxicity.

Mammalian Target of Rapamycin Inhibitors

- Everolimus and sirolimus are used in various malignancies, including RCC, breast, neuroendocrine tumors, and angiomyolipomas.
- Proteinuria has been reported in 3% to 36% of patients on everolimus and sirolimus.
- Kidney biopsies of patients with mammalian target of rapamycin (mTOR) inhibitor induced proteinuria have displayed FSGS.
- Proteinuria induced by an mTOR inhibitor is treated with RAAS inhibitors, but nephrotic range proteinuria requires drug discontinuation.

Calcineurin Inhibitors

- Calcineurin inhibitors (CNIs) are used as immunosuppressants with certain glomerular diseases, with solid organ transplantation, and as prophylaxis against graft versus-host disease (GVHD) for allogeneic hematopoietic stem cell transplantation (SCT).
- CNIs cause afferent arteriolar vasoconstriction, which if prolonged can cause ischemic ATN.
- Toxic ATN also has been described, resulting in characteristic vacuolization of tubular cell cytoplasm.
- CNIs are infrequently associated with systemic or kidney-limited TMA.
- CNIs may cause magnesium wasting in the kidney, which mechanistically occurs via TRPM6 down-regulation.

Electrolyte and Acid-Base Disorders in Cancer

Hyponatremia

Reduced GFR from any cause

SIAD (Small cell lung cancer, head & neck cancer)

Volume depletion from paracentesis/thoracentesis

Cancer-associated nausea, pain

Cancer-associated vomiting, diarrhea

Chemotherapy (cisplatin,

cyclophosphamide, vinca alkaloids)

Immunotherapy-induced thyroiditis/adrenalitis/ hypophysitis

CAR-T-associated CRS& volume depletion

Hypernatremia

Cancer or therapy-associated vomiting, diarrhea Decreased fluid intake (lack of thirst, dysgeusia) Diabetes insipidus (Central- CNS tumors; Nephrogenic-ifosfamide)

Hypomagnesemia

Cancer-associated vomiting, diarrhea Decreased dietary intake with cancerassociated anorexia Decreased absorption (PPI) Chemotherapy (cisplatin, EGFR inhibitors)

Hypokalemia

Cancer-associated, poor intake
Diarrhea/vomiting from chemotherapy or cancer

Ileal conduit

Leukemia/lymphoma blast crisis

Lysozymuria with certain leukemias

Cisplatin, ifosfamide-induced tubulopathy ACTH/renin/aldosterone-secreting tumors

GM-CSF, Vitamin B-12 therapy

Post-AKI diuresis (ATN, obstruction, etc.)

Hyperkalemia

AKI/CKD from any cause in a cancer patient Tumor lysis syndrome

Hypophosphatemia

Decreased dietary intake with cancer-associated anorexia

Tumor osteomalacia (FGF-23 secretion from hemangiopericytomas, giant cell tumors)

Hyperphosphatemia

AKI/CKD from any cause in a cancer patient Tumor lysis syndrome

Acid-Base Disorders

Metabolic acidosis

Type A LA (infection, etc.)

Type B LA (lymphoma, leukemia, other tumors) Fanconi syndrome (chemotherapy, MM)

Metabolic alkalosis

Cancer-associated vomiting

Renin producing tumor

Respiratory acidosis

Opioid analgesics for cancer pain Brainstem/cervical spine tumor

Tracheal stenosis from tumor/radiation

Respiratory alkalosis

Central neurogenic hyperventilation from pontine tumors

Figure 4. Electrolyte and acid-base disorders in natients with cancer including hyponatremia hypernatremia hyperhalemia hypoka-

Electrolytes/Acid-Base Disorders in Cancer Patients

Kidney Injury in Hematologic Malignancies

- The kidney is a target for end-organ injury in patients with hematological cancers, either directly due to the malignancy or indirectly via its treatment.
- kidney injury associated with
- tumor lysis syndrome,
- monoclonal gammopathy-related kidney disease,
- leukemia/lymphoma.

Table 3. Cairo-Bishop Definitions for Tumor Lysis Syndrome, Along With Grading by Severity of End-Organ Complications

Laboratory TLS: ≥2 or More Derangements 3 Days Before or 7 Days After Chemotherapy

Electrolyte/Metabolic-Breakdown Product	Absolute Value	Percent Change From Baseline	
Calcium	<7.0 mg/dL	Decrease of at least 25%	
Phosphorus	>4.5 mg/dL (adults), >6.5 mg/ dL (children)	Increase of at least 25%	
Potassium	>6 mEq/L	Increase of at least 25%	
Uric acid	>8.0 mg/dL	Increase of at least 25%	

End-Organ	Grade of Organ Injury							
Complication	0	1	2	3	4	5		
Cardiac arrhythmia or sudden death	None	No indication for intervention	Only nonurgent medical intervention	Incomplete control with medication or use of AICD	Severe life-threatening arrhythmia (syncope, heart failure, etc)	Death		
Serum creatinine	<1.5 × ULN	1.5 × ULN	>1.5-3 × ULN	>3-6 × ULN	>6 × ULN	Death		
Seizures	None	Not defined	One brief generalized seizure controlled with AEDs or infrequent focal motor seizures	Seizures with altered consciousness, breakthrough generalized seizures	Prolonged, repetitive or difficult to control (status epilepticus, refractory to meds)	Death		

Based on information in Cairo MS, Bishop M. Tumour lysis syndrome: new therapeutic strategies and classification. Br J Haematol. 2004;127:3-11. https://doi.org/10.1111/j.1365-2141.2004.05094.x. Abbreviations: AEDs, antiepileptic drugs; AICD, automated implantable defibrillator; TLS, tumor lysis syndrome; ULN, upper limit of normal.

- TLS results when purine nucleotides released from dying tumor cells are converted to xanthine and uric acid by xanthine oxidase.
- Acidic conditions favor uric acid precipitation in the PTEC lumen, causing ATN from direct injury and inflammatory pathways.
- Cell death also releases electrolytes, leading to hyperkalemia and hyperphosphatemia.
- Phosphorus complexes with calcium, causing hypocalcemia and calcium-phosphorus nephrocalcinosis, the latter also contributing to AKI.

- Prophylactic allopurinol and febuxostat prevent further rises in baseline uric acid levels.
- This does not treat existing hyperuricemia, and high-level xanthine accumulation may result, which is also potentially nephrotoxic.
- Allopurinol requires GFR dose adjustment, and hypersensitivity has been noted.
- Febuxostat's cost and availability have limited its use.
- Recombinant rasburicase cleaves uric acid to the soluble allantoin and is used prophylactically in high-risk TLS patients.
- It effectively lowers pre-existing high uric acid levels but is contraindicated in patients with glucose6-phosphate dehydrogenase deficiency.
- Finally, uric acid excretion with saline diuresis to target urine output ≥ 2 mL/kg/h is standard practice.
- **Urine alkalinization should be avoided** because it worsens calcium-phosphate precipitation.

Monoclonal-Gammopathy-Related Kidney Disease

Amyloidosis (AL, AH, AHL)

NS, subacute kidney injury, CKD, extra-renal disease common, AL>AHL, AH rare

+M-prot in most

LM: Congo red deposits in mesangium, CW

IF:κ or λ LC restricted staining

EM: Randomly arranged 9-11nm fibrils

C3 Glomerulopathy

Hematuria, Proteinuria, NS, subcute AKI

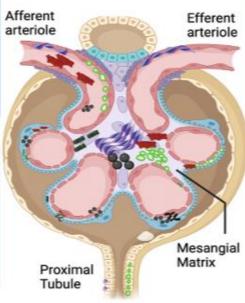
+M-prot in most, ↓C3

LM: mesangial, endocapillary, or MPGN

IF: Granular C3 in GBM/ mesangium. No Ig deposits likely w/o protease degradation

EM: glomerular deposits

MIDD (LCDD, HCDD, LCHDD) 000


Sub-nephrotic proteinuria, NS, reduced GFR, extrarenal disease less common than amyloid

+M-prot, but MGRS rates>MM

LM: Nodular mesangial sclerosis, Thick TBM.

IF: LCDD/LCHDD-glomerular/TBM κ or λ staining; HCDD-C3, HC staining

EM: EDD with punctate/ground pepper appearance in glomerular and TBMs and vessels.

LM: membranous, endocapillary, or MPGN

IF: Granular IgG3κ or IgG1κ in GBM/ mesangium.

EM: mesangial, SUE deposits

LC proximal tubulopathy

Proteinuria, slowly progressive kidney disease

Detectable M-prot in most patients

LM: proximal tubular swelling +/- inclusions

IF: proximal tubular staining for k (crystalline) tubulopathy or λ (non-crystalline tubulopathy);

EM: proximal tubular LC crystals or lysosomal inclusions

■Monoclonal Type I Cryoglobulinemia

Hematuria, Proteinuria, NS, AKI, HTN, low C4

+M-prot, most with MGUS/MM/ lymphoproliferative

LM:MPGN, MSGN .ECGN, crescentic GN

IF:granular Ig deposits in mesangium, CW, vessel walls

EM: SUE, mesangial EDD +/- substructure (fibrillar, tubular, tactoid)

PGNMID

Hematuria, high-grade proteinuria +/- NS, CKD and

M-prot and IFE usually negative

C3 deposits.

Immunotactoid glomerulopathy

Proteinuria, NS, CKD, HTN, ↓C3, C4

M-protein and clone in 50-60% of patients

LM: MPGN, MGN, ECGN, membranous

IF: Clonal IgG deposits in mesangium, SUP; granular deposits in GBM in membranous

EM: parallel microtubules 14-60 nm

Lymphomatous and Leukemic Kidney Disease

- Kidney disease in patients with leukemias and lymphomas may be clinically silent or present with **proteinuria** and/or **AKI**.
- Leukemic or lymphomatous kidney infiltration is usually asymptomatic, but bilateral interstitial involvement that increases interstitial pressure may cause AKI via compressive tubular injury.
- Flank pain and hematuria are among the signs and symptoms.
- Glomerular infiltration more commonly results in isolated proteinuria versus AKI.
- Kidney ultrasound in patients with infiltrating leukemia/lymphomas classically shows symmetric kidney enlargement.
- Metabolic uptake in the kidney on positron emission tomography-CT scan may be seen..

Paraneoplastic glomerular diseases

- Several **paraneoplastic glomerular lesions** have been noted with different lymphomas/leukemias.
- Most common among these are MCD and FSGS, which have been described in Hodgkin lymphoma, acute lymphoblastic leukemia, chronic lymphocytic leukemia (CLL), and acute and chronic myeloid leukemias, among others.
- CLL also has associations with MCD/FSGS, MN, and MPGN.
- Leukemias with white blood cell counts > 100,000/mm3 may rarely leadto intravascular leukostasis causing ATN from microvascular ischemia.

- Unique to **monocytic leukemias**, particularly chronic myelomonocytic leukemia (CMML), **lysozyme nephropathy** is another type of kidney injury associated with hematological malignancies.
- Lysozyme undergoes glomerular filtration and reabsorption by the proximal tubule.
- CMML and other leukemias **excessively produce lysozyme** which is directly toxic to proximal tubule cells with supraphysiological reabsorption.
- SPEP may show a gamma-region spike, but immunofixation electrophoresis (IFE) will be negative for a monoclonal component.
- Clinically, patients experience AKI from ATN as well as nonalbumin proteinuria from lysozyme excretion into urine. Hypokalemia may also be present.
- Light microscopy typically reveals ATN with hypereosinophilic granules within the PTEC cytoplasm that stain positive for lysozyme on immunohistochemistry.
- Electron microscopy shows numerous auto-phagolysosomes.

Kidney Disease Associated With Hematopoietic StemCell Transplantation

- Hematopoietic SCT is curative-intent therapy for both malignant and non-malignant hematological and nonhematological diseases.
- In autologous SCT, the patient self-donates stemcells; in allogeneic SCT, related/unrelated donors provide cells.
- Allogeneic SCT requires GVHD prophylaxis.
- Conditioning may be myeloablative for cancer and bone marrow eradication or nonmyeloablative with sufficient immunosuppression to allow engraftment.
- Depending on the type of SCT, patients may experience kidney disease due to bone marrow conditioning treatments in the pretransplant phase, prophylactic drugs after transplant, or direct effects of the transplant itself.

- SCT patients are susceptible to **indirect** and **direct** nephrotoxicity of **myeloablative conditioning** regimens.
- These treatments are associated with mucositis, vomiting, and diarrhea, all of which may lead to volume depletion and AKI along the prerenal/ATNspectrum.
- Clofarabine and melphalan used in such regimens have been linked to direct tubular toxicity, though biopsy data are sparse and confounding risk factors for AKI exist in the post-SCT period.

- AKI features prominently in engraftment syndrome, a constellation of rash, fever, pulmonary edema, and other symptoms that is typically seen within 7-10daysofSCT.
- SOS presents with abdominal pain, jaundice, and elevated liver enzymes from hepatic sinusoidal injury, which if prolonged results in portal hypertension.
- AKI with SOS is similar to hepatorenal syndrome.

- GVHD represents immune-mediated organ injury by donor cells.
- The classic definition of aGVHD/cGVHD is timebased; however, updated consensus criteria are both time and symptom based.
- Kidney biopsies in suspected kidney-GVHD have shown infiltrating tubulointerstitial T cells.
- Patients with kidney-GVHD may present with AKI with or without proteinuria as well isolated proteinuria.
- MN inSCT can be amanifestation of chronic GVHD.
- Reported target antigens include PLA2 R,NELL-1, andFAT1. MCD and FSGS have also been described.

- TA-TMA is similar in clinical presentation to TMA in the non-SCT setting, with reported incidence rates of 8.2% to 39.0%.
- Management of AKI and CKD after SCT is tailored to the etiology of AKI.
- For example, GVHD requires increased immunosuppression whereas TMA may require holding CNIs out of concern for drug-induced TMA.
- Defibrotide is approved in the UnitedStates for treatment of SOS.
- The patient in case 6 m eets thecriteria forTMA with microangiopathic hemolytic anemia, thrombocytopenia, and proteinuric AKI.
- Busulfan is a risk factor for TA TMA but is not thought to be the primary driver for TMA after transplant.
- The patient is not exhibiting skin changes consistent with skin cGVHD.
- Post engraftment syndrome is an inflammatory reaction that occurs in the immediate post-transplant period as neutrophils recover.
- He likely has TA-TMA, particularly given the multiple risk factors, including GVHD, CNI use, and myeloablative conditioning, meaning that answer (b) is the best response to question 6.

A.				Direct Nephrotoxicity	Indirect Nephrotoxicity
	Star Condit	rt of tioning		Direct effect of conditioning regimen: drug toxicity (clofarabine, melphalan), TLS	Indirect toxicity of conditioning regimen: vomiting, diarrhea, mucositis>↓ intake
(2)	Donor cell infusion	Day 0	njury	Marrow infusion toxicity (DMSO-related hemolysis)	Neutropenic infection: sepsis, diarrhea
Acute GVHD (classic)	Engraftment	Day 30	Acute Kidney Injury	Engraftment syndrome/ cytokine storm	Prophylactic drug toxicity: amphotericin B, CNIs, trimethoprim- sulfamethoxazole, acyclovir, methotrexate
Acute G\	Day 60	Acut	Hepatic sinusoidal obstruction	BK Virus Nephropathy- tubulointerstitial nephritis, hemorrhagic cystitis Adenovirus Nephropathy	
V _				Transplant-associated	
	Z.	Day 100		CKD due to AKI from any cause	
	GVHD		a	Chronic CNI toxicity	
H) GVHD	Overlap GVHD (NIH)		Chronic Kidney Disease	BK Virus Nephropathy	
cute GVHD (NIH)			Kidne	nuria	Membranous Nephropathy
GVH CP	i e		onic	Protei	MCD
Acut		Chr	Direct toxicity of conditioning regimen: Total body irradiation (dose dependent)	FSGS	

Cancer in Kidney Transplant Recipients

- Patients with CKD and/or end-state renal disease have a heightened cancer risk that is thought to reflect uremic immune dysfunction.
- In kidney transplant recipients (KTRs), improved GFR may restore that dysfunction, but **posttransplant immunosuppressants** abrogate that advantage.

- Cancer is the second-leading cause of death in KTRs.
- Compared with the general population, KTRs have a 2- to 3-fold higher cancer risk,.
- Standardized incidence ratios in KTRs are highest for Kaposi sarcoma, non-melanoma skin cancers, RCC, and (PTLD).
- The standardized mortality ratios are highest for PTLD, RCC, and melanoma.
- Given this, annual dermatological screening is minimal standard for all KTRs.

- **Cystic** kidneys because RCCs in KTRs are more common in **native** kidneys.
- PTLD in KTRs is rare, but the mortality risk approaches 50%.
- Most PTLD is associated with Epstein-Barr virus (EBV), and opinion-based recommendations suggest viral load monitoring for EBV higher-risk KTRs (recipient EBV-seronegative, donor EBV-seropositive).

- Cancer diagnoses in KTRs require complex decision making because
- (1) anticancer therapy has the same potential for nephrotoxicity in native versus allograft kidneys and
- (2) maintenance immunosuppression sustains transplant tolerance but opposes tumor regression.
- This requires collaboration between oncologists and transplant nephrologists to individualize cancer treatment based on residual kidney allograft function and patient goals.
- A consideration for KTRs is use of ICIs, which carries acute rejection rates of w40% in multiple studies.
- Concurrent use of mTOR inhibitors may reduce this rejection risk while maintaining antitumor efficacy, but studies are pending.
- Although mTOR inhibitors do have antineoplastic activity and may reduce relapse rates in SCC patients, there is concern that mTOR inhibitors carry a higher mortality risk in KTRs.

Thank you for your attention

Biomarkers in CKD

Biomarkers in CKD Patients

TABLE 1	Tumor markers	in CKD.
---------	---------------	---------

Tumor	С	KD	Significance	References	
markers	Non- dialysis	On dialysis			
CEA	Н	Н	Monitoring for malignancy in uremic patients might be unreliable	Tzitzikos et al., 2010; Cases et al., 1991; Rani et al., 2019	
SCC	Н	Н	Monitoring for malignancy in uremic patients might be unreliable	Cases et al., 1991; Xiaofang et al., 2007	
CA50	Н	Н	Monitoring for malignancy in uremic patients might be unreliable	Cases et al. (1991)	
NSE	Н	Н	Monitoring for malignancy in uremic patients might be unreliable	Cases et al., 1991; Xiaofang et al., 2007	
CA125	N or H	Ν	Monitoring for malignancy in dialysis patients might be unreliable	Cases et al., 1991; Mikkelsen et al., 2017	
CA153	N or H	N or H	Monitoring for malignancy in uremic patients might be controversial	Cases et al., 1991; Xiaofang et al., 2007; Rani et al., 2019 Tzitzikos et al., 2010	
CA199	N or H	Ν	Monitoring for malignancy in uremic patients might be comparatively reliable	Cases et al., 1991; Xiaofang et al., 2007; Rani et al., 2019 Mikkelsen et al., 2017	
CA724	N	Ν	Monitoring for malignancy in dialysis patients might be reliable in dialysis patients	Xiaofang et al. (2007)	
CYFRA21-1	Н	_	Monitoring for malignancy in uremic patients might be possibly unreliable	Xiaofang et al., 2007; Mikkelsen et al., 2017	
HCG	Н	_	Monitoring for malignancy in uremic patients might be possibly unreliable	Rani et al. (2019)	
PSA	N	N	Monitoring for malignancy in uremic patients might be possibly reliable	Cases et al. (1991)	
AFP	Ν	Ν	Monitoring for malignancy in uremic patients might be reliable	Tzitzikos et al., 2010; Cases et al., 1991; Xiaofang et al., 200	
PAP	Ν	N	Monitoring for malignancy in uremic patients might be possibly reliable	Cases et al. (1991)	
CGA	Н	_	Monitoring for malignancy in uremic patients might be possibly unreliable	Mikkelsen et al. (2017)	

H = high serum level; N = normal serum level.

Rani et el have shown that in advanced CKD patients(stages G4 and G5) without tumor the levels of CEA, HCG,CA199, andCA 153significantly higher compared to the healthy controls.

• It was illustrated that CA153 and CA125 elevated in CKD patients without tumorigenesis but might be associated with concomitant active hepatitis C.

Nevertheless, there were studies indicating that serum levels of cytokeratin19 fragment (CYFRA21-1) might be involved in the development of epithelial cell carcinoma and chromogranin A (CGA) be associated with neuroendocrine tumor in CKD patients, and their reference limits might differ from those of healthy subjects.

- Another study found that CEA, squamous cell carcinoma (SCC), carbohydrate antigen 50 (CA50) and neuron-specific enolase (NSE)
- showed high false positive rates compared to normal reference values
- of the indicators in CRF patients and concluded that these values were unreliable.

- CRF patients, whereas carbohydrate antigen 125 (CA125), CA153,
- CA199, alpha-fetoprotein (AFP), prostate-specific antigen (PSA)
- and prostatic acid phosphatase (PAP) were still specific for
- assessing tumors in CRF with different cutoff values.

• And a recent study mentioned that prostate-specificantigen (**PSA**), alpha-fetoprotein (**AFP**), and β -human chorionicgonadotropin (β -**HCG**) might be reliable for cancer screening indialysis patients, while total prostate-specific antigen (TPSA) and β 2-microglobulin (β 2-M) might be of some value in patients after renal transplantation.

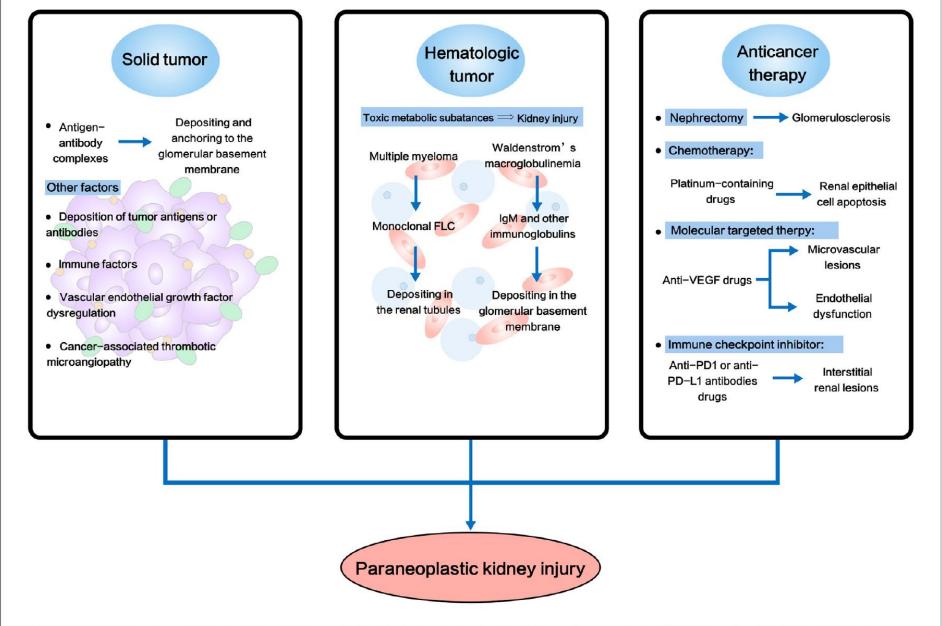


FIGURE 2 | Schematic diagram of potential molecular mechanisms of paraneoplastic kidney injury. Paraneoplastic kidney injury was linked to solid tumor, hematologic malignancies and anti-cancer therapies. FLC, free light chain; VEGF, vascular endothelial growth factor; PD1, programmed death 1; PD-L1, programmed death ligand-1.